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Crack deflection by rod-shaped inclusions 
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This paper presents a model for crack deflection around rod-shaped inclusions. In this analysis 
both a stress intensity factor approach and a crack surface area approximation are used. The local 
stress intensity factors of a deflected crack along two adjacent rod-shaped inclusions are derived 
first. Then, the path of advancement of the deflected crack front along the inclusions can be 
determined. Knowledge of the crack path provides the basis for evaluating the deflection-induced 
reduction in strain energy release rate as well as the basis for calculating the deflected crack 
surface area. The analytical predictions are compared with the theoretical results of Faber and 
Evans and the differences between these two analyses are discussed. 

1. Introduct ion  
The purpose of this paper is to study the crack de- 
flection processes. Crack deflection is an effective 
toughening mechanism in polycrystalline ceramics [1] 
and in brittle matrices containing second-phase inclu- 
sions [2-6]. 

Crack deflection may arise from either residual 
stresses in an inhomogeneous material or weak inclu- 
sion-matrix interfaces. The non-planar crack due to 
deflection results in an enhanced toughness. Experi- 
mental observations of the deflection of microcracks 
through grain boundaries in polycrystalline solids and 
a conventional fracture mechanics analysis were car- 
ried out by Gell and Smith [1]. Crack deflection was 
also identified as the major toughening mechanisms 
for Si3N4 with rod-shaped 13-phase [7, 8] and whisker- 
reinforced glass and ceramic matrix composites [4-6]. 
More recently, the deflection of cracks around second- 
phase inclusions was analysed by Faber and Evans 
[2, 3]. In their pioneering analysis the toughness 
increases due to crack deflection are related to the  
volume fraction, morphology and aspect ratio of in- 
clusions. However, their analysis has two limitations. 
First, the validity of the local stress intensity factor 
expressions of a deflected crack is uncertain. Second, it 
was assumed that maximum toughness due to crack 
deflection is achieved when the crack front reaches the 
end-points of the two neighbouring rod-shaped in- 
clusions. This would require the crack front to assume 
certain configurations which are sometimes not ener- 
getically feasible. For the general crack-path problem, 
the energetically favoured crack front position is the 
one that maximizes the strain energy release rate [9]. 
Consequently, in the following analysis we identify the 
path of crack extension which satisfies this require- 
ment. 

In this paper, a comprehensive treatment of the 
crack deflection processes for rod-shaped inclusions 
based upon a modification to the work of Faber and 
Evans [2] is given. First, the three-dimensional stress 
intensity factors of a deflected crack along two adja- 
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cent rod-shaped inclusions are derived. Then, the 
crack deflection profile along the rod-shaped inclu- 
sions is identified by the maximum strain energy re- 
lease rate approach. The crack front position respon- 
sible for maximum toughening is discussed. In the 
present analysis the second-phase inclusions are 
modelled as having the same elastic properties as the 
matrix. Therefore, the elastic interaction between the 
matrix and inclusions can be neglected. 

2. Analysis of  crack de f lec t ion  
2.1. General considerations 
Fig. 1 depicts a crack of length c deflected by an angle 
0. This deflection results in a "tilted" crack. It can be 
viewed as due to a rotation of angle 0 with the rota- 
tional axis parallel to the z-axis and passing through 
point O'. The x' axis lies in the deflected crack plane. 
Fig. 2 illustrates a "twisted" crack which is achieved 
through a rotation of the crack about the x-axis for an 
angle qb. The x (x') axis also lies in the deflected crack 
plane. Under an applied tensile load in the y direction 
the tilted crack gives rise to both Mode I (opening) 
and Mode II (shearing) fractures. Similarly, the 
twisted crack induces both Mode I and Mode III 
(tearing) fractures [9-1. 

The enhancement in fracture toughness due to 
crack deflection can be evaluated based upon the 
knowledge of the stress intensity factors K~, Kll and 
Knl. The extension of the crack is then governed by 
the strain energy release rate, G, along its deflected 
trajectory 

K?(1 - v z) + K2(1 - v 2)+K~l(1 + v) 
G = (1) 

E 

Here, E and v are, respectively, the Young's modulus 
and Poisson's ratio of the material. 

The strain energy release rate due to crack 
deflection is evaluated from the stress intensity factors 
of the deflected crack front. Then, the critical strain 
energy release rate, G~, is obtained by considering the 
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Figure 1 Tilted crack configuration depicting a crack of length 
c deflected by an angle 0. 
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Figure 2 Twisted crack configuration which is achieved through 
a rotation of the original crack about the x-axis for an angle dp. Both 
x and x' axes lie in the deflected crack surface. 

ratio of the strain energy release rates of the undeflec- 
ted (G m) and deflected ( ( G ) )  cracks [2] 

G m 
G~ - O~ (2) 

( G )  

where G m is the critical strain energy release rate of an 
undeflected crack, and ( G )  is the average value for all 
the possible deflected crack configurations. 

2.2 ,  S t r e s s  i n t e n s i t y  f a c t o r  a p p r o a c h  
2.2.1. Local stress intensity factors of 

a deflected crack 
The stress intensity factor expressions of a crack front 
propagating along two neighbouring rod-shaped in- 
clusions are more complex than the cases of Figs 1 and 
2, because the deflected crack plane exhibits concom- 
itant tilting and twisting. This is a three-dimensional 
problem and the deflected crack front gives rise to all 
three modes of fracture (I, II and III). The exact three- 
dimensional stress intensity factor solution is difficult 
to obtain. The approach of the "transformed stress- 
intensity factor" of Gell and Smith [1], Lawn and 
Wilshaw [9] and Faber and Evans [2] is adopted in 
the present analysis. The stress intensity factors of 
a deflected crack under an applied tensile stress oy, as 
shown schematically in Fig. 3, can be expressed as 

K~ = f l  (0, qb, *)K,  (3a) 

K~ = f2(0, dp, ~t)K, (3b) 

K~l = fs(0, qb, ~)KI (3c) 

where the angular functions, f l ,  f2 and fs, associated 
with the tilt angle 0, twist angle dp and bias angle 

(Fig. 3) are determined by resolving the stress corn- 
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Figure 3 Schematic view of a deflected crack front with tilt angle 0, 
twist angle ~b and bias angle ~. 
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Figure 4 Schematic view of crack deflection by two neighbouring 
rod-shaped inclusions. 

ponents of a tilted crack plane into the deflected crack 
plane (see Appendix); K~ is the stress intensity fracture 
of the main crack. The expressions for f l(0,  4, @), 
f2(0, d~, qs) and f3(0, d~, ~) are 

fl(0,  qb, @) = cos3(0/2)[2vsinZqb + cos2qb] 

f2(0, qb, @) = sin(0/2) cos2(0/2)cos q~ cos 

- (1 - 2v) cos 3 (0/2) sin qb cos qb sin 

f3(0,  qb, ~ )  = 

(4a) 

(4b) 

- sin (0/2) cos 2(0/2) cos qb sin t~ 

- (1 - 2v) cos 3(0/2) sin qb cos qb cos 

(4c) 
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where v is the Poisson's ratio of the matrix material. 
Faber and Evans [2] defined two types of crack 

deflection: same-sign deflection for sign (01) = 
sign(02) (Fig. 3), and opposite-sign deflection for 



sign (01) = - sign (02) (Fig. 4). In Faber and Evans [2], 
the modelling of same-sign deflection is performed by 
simplifying the deflection to a pure tilt crack with an 
average tilt angle of(01 + 02)/2. As a result, the effects 
of the twist (qb) and bias (4) crack front orientation on 
the strain energy release rate are ignored. Also, the 
stress component z,0 (see Appendix) which is respons- 
ible for Mode II fracture has been included in the 
present analysis; this is essential in the consideration 
of crack deflection and is missing in the expressions of 
the stress intensity factors of an opposite-sign crack in 
the analysis of Faber and Evans. Furthermore, using 
the comprehensive stress intensity factor expressions 
of Equations 4, the strain energy release rates of any 
general configurations of rod-shaped inclusions can be 
evaluated. Thus, it is unnecessary to treat the same- 
sign and opposite-sign deflections separately, as in 
Faber and Evans [2]. 

2.2.2. Crack deflection model 
For the purpose of illustration, we consider the inter- 
action of a crack front (line Po Qo in Fig. 4) with two 
adjacent rod-shaped inclusions oriented at angles 
01, 02, Ix1 and ~t2 with respect to the main crack plane. 
In order to define the morphology of the deflected 
crack surface in Fig. 4, the two inclusion segments 
protruding from the main crack plane are divided into 
M segments. Let ~ and 13 denote the lengths of the two 
segments; the divisions on the two segments are of 
lengths ct/M and 13/M. Furthermore, knowing the 
angular positions 0a and gl, and 02 and 112 for the 
inclusions, the angles hi and h2 of Fig. 4 can be readily 
written as 

hl = tan- l ( tan01/cos  ~q) (5a) 

L2 = tan-1 (tan02/coslx2) (5b) 

A general crack front is denoted by P~Qj. For clarity, 
the geometric configuration of the deflected crack is 
recapitulated in Fig. 5. The twist angle ~u and bias 
angle ~u are indicated, and their expressions are, 
respectively, 

- J  13sin02)/ qbu = tan-iI(~-~ 

( ' )1 PoQo + ~ u c o s 0 ~  sin~q - 13 cos 02 sin rt2 

(6) 

sin .I( .cos0icos.1 
, ,.so..os,.)/.,o,,] ., 
M 

where the length of crack front, P~Qj, is given by 

[ PIQi = (Ai')) 2 + - ~ ~sin02 

(8) 

A~j in Equation 8 indicates the projected length P~ Qj 

70 

Y X 

Moin crack 
plane 

Figure 5 Another  representation of the crack front PIQj in Fig. 4. 

(Fig. 4) and it is expressed as 

, i J 13 cos 02 sin g2 A u = A + ~ ~ cos 01 sin Ix1 - 

(9) 
where A is the length of PoQ0. 

In the following analysis, A is chosen as the 
centre-to-centre distance between two neighbouring 
randomly positioned rod-shaped inclusions. An ap- 
proximation of this parameter is given by Bansal and 
Ardell [10] for the nearest-neighbour spacing between 
two cylinders of finite length in a random array: 

A e 4vf f4 ~ --  -- - -  X 1/2 exp(-- x)dx  (10) 
r - -  g f  1/2 vf 

where r is the inclusion radius and Vf is the inclusion 
volume fraction. 

The strain energy release rate, (G) ,  of the crack 
front PiQj, normalized with respect to that of the 
undeflected crack, G m, is given as 

( G ) p ~ Q j  q i j  f i ~ {  
G,, hi -- h2 [ f l  (L, (p,j, ~,j)]2 2 

l + v  } 
+ [A (L e,j, ~,~)]2 + ~ [/3 (L ~'u, *U)] 2 dL 

(11) 

where rll J is the ratio of the undeflected to deflected 
crack front length, which can be expressed as 

qij = (A +.~-.cosO, sin,1-- J.,cos02sinl.t2)/ 

[(A0)2 + (~-.sin0,- ~- ,sin02)'] '/' (12, 
The integral in Equation 11 is due to the angle, h, 
varying from h~ to h 2. 

The propagation of the crack front from its initial 
location of Po Qo in Fig. 4 is discussed in the following. 
Although crack propagation along the inclusions is be- 
lieved to be a continuous process, we focus on the crack 
front locations at Po, P1 . . . . .  P~ . . . . .  PM along the 
inclusion of length ~, and the locations at 
Qo, Q1 . . . . .  Q~, �9 . �9 ,QM along the inclusion of length 
I~, for the convenience of numerical calculations. Now 



consider an instantaneous location of the crack front at 
PiQj.  The subsequent crack front location, according to 
the divisions made on the inclusion segments, could be 
PiQj+ 1, Pi+, Qj or PI+ 1Q j+ 1. The strain energy release 
rates correspoding to these three paths of crack exten- 
sion are calculated and the new crack front location 
associated with the maximum strain energy release rate 
is identified. If, for instance, the crack front assumes the 
new position of P~Qj+ 1, the calculation process for G is 
repeated for the locations of PiQj+2, PI+IQj+I and 
P~+IQj+2. The process of calculations will terminate 
when either one of the following two situations is at- 
tained. First, this process continues until the crack front 
reaches the end of one of the inclusions. The further 
extension of the deflected crack occurs in the matrix and 
the crack path becomes unknown. In this case the max- 
imum toughening is accomplished by the crack front 
position that has the smallest strain energy release rate 
among all instantaneous crack front positions. Second, 
under some crack configurations the strain energy re- 
lease rate of the crack front will approach to zero (i.e. the 
infinite critical energy release rate). Further movement 
along the inclusions will cause the unreasonable result of 
negative strain energy release rate. For such crack con- 
figurations the strain energy release rate of the crack 
front which is responsible for the maximum toughening 
approaches to zero. 

By integrating over all the possible relative positions 
of the two rod-shaped inclusions of identical length, L, 
(i.e. lengths ~ and 13, and orientation angles 01, 02, I~1 and 
la2), the average strain energy release rate is expressed in 
the general form as 

G m -L~z~ do d - , / 2  ,]-~/2 d - , / 2  ~'1 - -  ~'2 

f:{ x [ f l (k ,  qbtj, xpH)] z + E f 2 ( L ~ , , ~ , ) ]  2 
2 

l + v  } 
+ F T - g :  i-k @,, 

x d~. dO, dos dpl dp2 dot d[3 (13) 

where the subscript Ia represents the crack front posi- 
tion that achieves the maximum toughening for each 
crack cofifiguration. In the numerical calculation, each 
of the parameters a, 13, 01, 02, ta, and bt2 is subdivided 
into many increments when considering all the possible 
inclusion configurations. Finally, the critical strain 
energy release rate, Gr is obtained from Equation 2. 

2.3. Crack surface  area approximat ion  
The surface area of a deflected crack, S d, relative to that 
of an undeflected crack, S m, can be regarded as an 
estimate of increment in critical strain energy release 
rate. In the analysis of Faber and Evans 1,,2], the "result- 
ant toughness" from the crack surface area approxima- 
tion is given by 

G c S d 2 Fr~/2F(A~ 2 ( H  )2 11/2 
G TM = S - ~  = ~Jo k \ 2 )  + 2r rsinO dO 

1 f /2 + - sec OdO (14) 
x 0 

where r and H are the radius and length of a rod- 
shaped inclusion, respectively. This simple approx- 
imation of crack surface area cannot reflect the surface 
morphology induced by deflection around inclusions. 
A close estimation of crack surface area is presented in 
the following. 

T he  deflected crack surface area defined by two 
adjacent rod-shaped inclusions can be calculated by 
summing the triangular areas identified by the crack 
path (section 2.2.2). Considering the case of a twisted 
crack, for instance, the lengths Of Pi QJ and P; Q) from 
the triangle P iQjQj+I  (Fig. 6) are, respectively, given 
by Equations 8 and 9. Similarly, expressions for 
PiQi+I and P/Qj+ 1 can be obtained. The area of the 
triangle PzQjQj+I is given by 

PiQj ) (Sp ,  QjQj+ 1 -- PiQj+I)I 1/2- (15) 
3 

= } ~ + PiQj + PiQj+I 

where 

Spi Qg Qj + 1 (16) 

The projected area of the deflected crack on the un- 
deflected crack plane is 

Pr QjQj+ 1 PiQjQj, 1 SpiQjQj+I M 

x (S[,,QjOj+ , -- P[Qj) - (S~,~QjQ~+, 
1/2 

- P ~ Q j + I )  (17) 

where 

1 (  I~ cOs 02 p,cw , ) 
Sb, QjO~+~ = ~ ----M--- + i,<j + P/Qj+I (18) 

Integrating over all possible inclusion configurations, 
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Figure 6 A crack surface area created by the advancement of crack 
front from PiQj to PIQj+~. 
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the relative surface areas can be written as 

S TM L I"(. d-n~2 d-rq2 d - n / 2  do 

{ S[S -(13/M)] (S - P~Qj) (S - P, Qj+ 1)} 1/2 

where S and S' are the simplified notations for 
Sp,qjoj+, and S'p,Qjoj + ,, respectively. Then the relative 
critical strain energy release rate, Go/Gp, by the crack 
surface area approximation is obtained from Sa/S m by 
using Equation 14. 

3. Numer ica l  results and discussions 
In the numerical integrations for fracture toughness 
and crack surface area, a step-wise calculation is per- 
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Figure 7 Relative critical strain energy release rate versus number  
of subdivisions at inclusion volume fraction Vt = 0.2 and aspect 
ratio R = 12. 

(19) 

formed at incremental values of at, [3, 0x, 02, ~tl and ~t2. 
Furthermore, at each step of calculation, M subdivi- 
sions are made along the inclusions to determine the 
paths of the crack front movement. The sensitivity of 
the end results to the subdivisions, M, has been exam- 
ined. Fig. 7 depicts the variation of fracture toughness 
(Gc/G m) predictions with the number of subdivisions 
(M). The calculation is performed for the inclusion 
volume fraction Vf = 0.2 and aspect ratio R = 12. The 
fracture toughness values obtained from the stress 
intensity factor approach decrease as M increases, 
and approach the asymptotic value for M > 100. 

The profiles of crack front positions along two ad- 
jacent rod-shaped inclusions and the corresponding 
relative strain energy release rates, GIG m, are illus- 
trated in Figs 8, 9 and 10 for three specific cases. The 
solid line segments between the two inclusions in- 
dicate schematically the instantaneous crack front 
positions identified by the present approach. At the 
initial stage of deflection, the decrease in strain energy 
release rate is mainly due to the tilting of the crack 
front. Subsequently, the dependence of toughening on 
the twisting of the crack front and the increase of the 
crack front length becomes significant. 

Figs 8-10 indicate another major difference in the 
crack paths of Faber and Evans [2] and the present 
approach. Faber and Evans assumed that the crack 
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Figure 8 Schematic diagram of the crack path between two adjacent inclusions with values of the relative strain energy release rates, G/G m, 
corresponding to these crack front positions for the case of Vf = 0.2, R = 6, a = L, 13 = 0.5L, lax = 0, Ix2 = 0, 0x = ~/3, 0z = ~/6. The dashed 
line linking two inclusion ends is the crack front position used to calculate the strain energy release rate in Faber and Evans [2]. 
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Figure 9 Schematic diagram of the crack pa ths  between two inclusions criss-crossing each other  and the relative strain energy release rates, 
GIG m, corresponding to the crack front posit ions for the case of Ve = 0.2, R = 6, ~ = 0.5 L, 13 = 0.5L, ~t~ = n/4, la2 = 0, 0~ = - n/6, 02 = n/3. 
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Figure 10 Schematic d iagram of the crack pa ths  between two inclusions criss-crossing each other  and the relative strain energy release rates, 
GfG m, corresponding to the crack front posit ions for the case of Vf = 0.2, R = 6, ~ = 0.5L, 13 = 0.5L, gl = - ~/4, g2 = ~/4, 01 = r~/6, 

02 = ~/3. 

front always reaches the position of the broken line 
joining the two inclusion ends, and this crack front 
position is used to calculate the stress intensity factors. 
It is uncertain whether a crack front will always reach 
the position indicated by the broken line in Figs 8-10 
for the following reasons. First, such a position would 
be difficult to attain if the difference between the 
inclusion lengths ~t and 13 is significant. Second, the 
angles la~ and g2 of the two inclusions could be such 
that they criss-cross each other in their spatial ar- 
rangements. This would require the crack surface to 
rotate around the inclusions and as a result the strain 
energy release rate becomes negative, as indicated by 
the broken lines in Figs 9 and 10. Our calculations 
have indicated that such crack front configurations 
are sometimes energetically unfavourable. 

The critical strain energy release rates computed from 
Equations 13 and 2 for the stress intensity factor ap- 
proach and the crack surface approximation from 
Equation 19 are the presented in Fig. 11 as a function of 
inclusion volume fraction. The theoretical predictions of 
Faber and Evans [2] are also illustrated in Fig. 11. 
For the stress intensity factor approach the predicted 
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Figure 11 Relative critical strain energy release rate versus inclu- 
sion volume fraction. 

critical strain energy release rates of the present ana- 
lysis are smaller than those of Faber and Evans [2]. 
The difference of the results can be illustrated clearly 
by Figs 8-10. The relative critical strain energy release 
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Figure 12 Comparison of relative critical strain energy release rate 
predictions from the stress intensity factor approach and the surface 
area approximation for the pure tilt crack (Fig. 1). 

rate obtained from Equation 19 based upon a crack 
surface area approximation is larger than that by the 
stress intensity factor approach. This phenomenon can 
be illustrated by the case of pure tilted crack (Fig. 1) 
as shown in Fig. 12. The crack surface area method 
gives a close estimation of the critical strain energy 
release rate for small tilt angles. However, at large tilt 
angles the crack surface approximation overestimates 
the increase in the critical strain energy release rate. 
On the other hand, in the analysis of Faber and Evans 
[2] the predictions based upon the crack surface area 
approximation are lower than those by the stress 
intensity factor approach. 

4. Conclusions 
The three-dimensional stress intensity factor solutions 
for deflected cracks have been derived. These formulae 
can be used to calculate the strain energy release rates 
of cracks of arbitrary configuration and therefore 
eliminate the need to use different formulae for evalu- 
ating the same-sign and opposite-sign deflections, as 
defined by Faber and Evans [2]. Because of the use of 
separate formulae, Faber and Evans's model predicts 
different results from the same-sign and opposite-sign 
formulae for the crack configuration where one of the 
tilt angles vanishes. The present model does not create 
such inconsistency. 

The crack path along two neighbouring rod-shaped 
inclusions has been identified. In the present analysis, 
the crack extension along inclusions is governed by 
the criterion that the crack front seeks to maximize the 
strain energy release rate. The results show that the 
assumption of a specific crack front position for 
achieving maximum toughening is not always appro- 
priate. The knowledge of the crack path is essential for 
analysing the toughening effect. 

Appendix: Local stress intensity factors 
of a deflected crack 

The method for deriving the formulae for the local 
stress intensity factors of a deflected crack in the 
present analysis is the same as that of Lawn and 

Wilshaw [9] in which the stresses acting on the tilted 
or twisted plane are determined from the stresses at 
the tip of the undeflected crack by an appropriate 
tensor transformation. For a tilted crack subject to 
Mode I loading, the stress intensity factors derived by 
this method are the same as the first-order solutions 
by Cotterell and Rice [11] using perturbation proced- 
ures. These solutions are almost equivalent to the 
those of Lo [12] and Kageyama and Chou [13], in 
which the crack is modelled as a continuous distribu- 
tion of dislocations. 

The local stress intensity of a crack, which is deflec- 
ted by a tilt angle 0, a twist angle qb and a bias angle 

(Fig. 3), is evaluated by resolving the components of 
applied stress into the deflected plane. First, consider 
a main crack under Mode I loading (Oy); the corres- 
ponding stress intensity factor is denoted as K~. When 
the crack is tilted by an angle 0 (qb = ~ = 0 in Fig. 1), 
the stress intensity factors, Kr can be expressed in the 
following general forms 

Kit = f l  (0)K, (a l )  

K~, = f2(0)K, (A2) 

The solutions off1 (0) and f2 (0) are given by 

f l (0)  = cos3(0/2) (A3) 

f2(0) = sin(0/2)cos2(0/2) (A4) 

The stress components of a cubic element at a distance 
r from the crack-tip (Fig. Ala), for the plane strain 
condition, associated with K~ are (see for instance 
Lawn and Wilshaw [9]) 

c~r = o0 (2for)l/2 (A5a) 

2vK~ 
eYz = (2nr)1/2 (A5b) 

�9 r0 = ~rz = ~0~ = 0 (A5c) 

where v is Poisson's ratio. Similarly, the stress com- 
ponents associated with Kh are 

vr0 = (2~r)1/2 (A6a) 

~ = cy0 = cyz = z,z = ~0~ = 0 (A6b) 

Fig. Alb shows the original tilted crack plane GHIJ. 
Now consider a rotation ~b of the plane with respect to 
the r-axis; the resulting crack plane is denoted by 
EFGH with the coordinate system r'O'z'. The stress 
components on the plane EFGH can be easily cal- 
culated from the transformation equations. The com- 
ponents that are relevant to the present analysis are 

,) K[ 
eY0' = (COSZq b + 2vsinZ(P (2~1/2  (A7a) 

z~'0, = cosq5 (2nr)1/2 (A7b) 

K; 
z~'0' = - (1 - 2v)sinqbcosqb (2nr)m (A7c) 

Finally, the bias angle of the crack front is achieved 
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Figure A 1 (a) Schematic diagram of the stress components of a cubic element at a distance r from the crack-tip. (b) Schematic diagram of the 
stress components G0,, zr,o, and "~,0, on the plane EFGH due to the rotation of the 0z plane about the r axis by the angle d~. 

through a rotation by an angle ~ with respect to the 0' 
axis. The resulting coordinate system is denoted by 
r"O"z". The stress components associated with the 
fully deflected crack defined by the angles 0, dO and ~ can 
again be found from simple stress transformation rela- 
tions and Equations A7. The stress components 
relevant to the subsequent analysis are 

~0,, = or0, = (cos2dO + 2vsinZ dO) (2 1/2 (A8a) 

Kr 
~,,,~,, = cos dO c o s ,  (-~-~)1/2 

Kt  
- (1 - 2v)sindOcosdOsin~(2rcr)l/2 (A8b) 

Kh 
z~,,0 . . . .  cos do sin q (2rcr) 1/2 

Kt 
- (1 - 2v)sindocosdocosq(2rcr)l/2 (A8c) 

The above results can be presented in the condensed 
form for the stress field at the tip of a deflected crack 
front as shown in Equations 3 and 4. 
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